
Security Assessment

ApolloX - Audit 2
CertiK Verified on May 10th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

2 Major 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

5 Medium 3 Resolved, 2 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

16 Minor 16 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

7 Informational 7 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY APOLLOX - AUDIT 2

CertiK Verified on May 10th, 2023

ApolloX - Audit 2

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Exchange

ECOSYSTEM

Arbitrum | Binance Smart

Chain (BSC) | Ethereum

(ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 05/10/2023

KEY COMPONENTS

N/A

CODEBASE
update 1d4142c08a10b459c3625ceba84606135de3d2fd

base 32490e5cb13bf90af5cda621ae3464e77c250000

...View All

30
Total Findings

26
Resolved

0
Mitigated

0
Partially Resolved

4
Acknowledged

0
Declined

0
Unresolved

https://github.com/apollox-finance/apollox-perp-contracts/tree/1d4142c08a10b459c3625ceba84606135de3d2fd
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000

TABLE OF CONTENTS APOLLOX - AUDIT 2

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

ALP-01 : Centralization Risks in ALP.sol

AXB-02 : Centralization Risks in ApolloX.sol

FAC-01 : Potential Reentrancy Attack

LBM-01 : `brokerUpdate*()` functions don't update the storage

LPF-01 : `LibPriceFacade.requestPriceCallback()` can be too gas consuming

LPM-01 : `LibPairsManager.batchUpdatePairStatus()` always reverts

PFF-01 : `PRICE_FEEDER_ROLE` and `KEEPER_ROLE` can manipulate the prices

AXI-01 : `supportsInterface()` is inconsistent

LAM-02 : Lack of sanity check in `LibAlpManager._calculateAlpAmount()`

LAR-01 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

LBM-02 : `LibBrokerManager.removeBroker()` allows removing of `defaultBroker`

LCP-01 : Missing Validation on `latestRoundData()`

LFM-01 : `LibFeeManager.chargeOpenFee()` doesn't update `feeDetails.total` if `daoShareP == 0`

LPF-02 : The price from oracle explicitly converted to `uint64`

LPF-03 : `maxDelay` can be ignored by `PRICE_FEEDER_ROLE`

LTC-01 : Lack of sanity check in `TradingConfigFacet.initTradingConfigFacet()`

LVB-01 : Strict comparison in `LibVault.decreaseByCloseTrade()`

PMF-01 : Inconsistent checks in `_leverageMarginsCheck()`

TCF-01 : Zero `entryPrice` returned by `TradingCheckerFacet.marketTradeCallbackCheck()`

TOF-01 : Wrong `OrderInfo.amountIn` saved to history when new `openTrade` is created by
`TradingOpenFacet.marketTradeCallback()`

TPF-02 : `TradingPortalFacet.addMargin()` allows to increase margin if `PairStatus.CLOSE`

TRA-01 : `TradingCloseFacet._decreaseByCloseTrade()` can't extract all `openTradeAmountIns`

VFB-01 : No Upper Limits for Fees

CON-01 : Typos

TABLE OF CONTENTS APOLLOX - AUDIT 2

CON-02 : Redundant code

DIA-03 : Incompatibility with Deflationary Tokens

LAM-01 : Time Units Can Be Used

LAM-03 : `coolingDuration` can be avoided by whitelisted ALP owners

LIB-01 : Basis point values are referred as percent

LVB-02 : Redundant usage of `LibVault` namespace

Optimizations

DIA-01 : Tautology

DIA-02 : Arguments Should Be `calldata`

FAC-03 : `_check()` argument can be declared `storage`

LAC-01 : Redundant data in `LibAccessControlEnumerable`

LIB-02 : Unnecessary Use of SafeMath

LIB-03 : `memory` variable can be used instead of `storage`

OAT-01 : `OrderAndTradeHistoryFacet.getOrderAndTradeHistory()` is gas consuming

TRA-02 : `TradingCloseFacet._transferToUserForClose()` can be optimized

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS APOLLOX - AUDIT 2

CODEBASE APOLLOX - AUDIT 2

Repository

update 1d4142c08a10b459c3625ceba84606135de3d2fd

base 32490e5cb13bf90af5cda621ae3464e77c250000

CODEBASE APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/1d4142c08a10b459c3625ceba84606135de3d2fd
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000

AUDIT SCOPE APOLLOX - AUDIT 2

97 files audited 6 files with Acknowledged findings 23 files with Resolved findings 68 files without findings

ID File SHA256 Checksum

ALP contracts/ALP.sol
15f920de5d77abc3c0b16a9f24ad24c13ec7f0

8ccbe0c2c63b7c2a4bc119c50a

ARF contracts/diamond/facets/ApxRewardFacet.sol
263d5dcaa2899fc2d198c0060e23aae3b0ccd

e6249d61880f9ee6b59cf5ae755

BMF contracts/diamond/facets/BrokerManagerFacet.sol
97af7eb63449e13b393c05f541a25682d9aba

a19fdeedbe97dd033db91078b74

PFF contracts/diamond/facets/PriceFacadeFacet.sol
f630cf0ee840600275c1119537d90b2236faf6

e2b997166e9cd2810c0da73ef4

LAC
contracts/diamond/libraries/LibAccessControlEnume

rable.sol

8e5f9b15cdbbc30a0a8d2e9b49e102804454d

e7735cc36f1f0159acccfbb153d

AXB contracts/diamond/ApolloX.sol
d2dbd545e203a55bf491dc662b752f52a8f824

a4c720e7d974efffeeb46145d6

CON contracts/utils/Constants.sol
bc6118727ceb8d305222a3cf9830ec92843ae

ed285465764674ce6cef7d3a2f9

AMF contracts/diamond/facets/AlpManagerFacet.sol
f072f010dd6bfc845a6503d63caa0c65df0746

8736a627a769d00da2bcad2b1e

LOF contracts/diamond/facets/LimitOrderFacet.sol
eb39a2f13598717f133f587de0b4730f1771b9

4217b30140917685efc7d33dbd

OAT
contracts/diamond/facets/OrderAndTradeHistoryFac

et.sol

bdcb123f06d400ec80ae2d4613d93e1a8c441

a41310a85e5a2ba947d513458a6

PMF contracts/diamond/facets/PairsManagerFacet.sol
467a2f18be5a437fc89733eb3092c37b32534

a4736f2f14dd3ed44af3328dc86

SRF contracts/diamond/facets/StakeRewardFacet.sol
df19200edf11c8c4b8c5d129e88a6678c6553d

7ff380ec219cf868080fe383b3

TCF contracts/diamond/facets/TradingCheckerFacet.sol
c5e5e7f1112e981024a8e4116462ee611c7ad

26c583295e1d225ccccfb6d9735

TRA contracts/diamond/facets/TradingCloseFacet.sol
3622807fedcafd0d37098446056ab46def5926

d69fae74ae34271f592d440128

AUDIT SCOPE APOLLOX - AUDIT 2

ID File SHA256 Checksum

TOF contracts/diamond/facets/TradingOpenFacet.sol
2f81bd091457445c2bee8e2414c14fac9b050

6df53f75503265b2e8cd53a2710

TPF contracts/diamond/facets/TradingPortalFacet.sol
3b91f6d76cd6cf7a9bd5fe23513da6fcbd4dffa6

131c4c2b6d7d173b8d5ecca0

VFB contracts/diamond/facets/VaultFacet.sol
1cde88c8ba31f4b64133e96ac9195571a9d9a

c019ecf5530b89eb4f7dc32829b

LAM contracts/diamond/libraries/LibAlpManager.sol
20977aa2edea0c64f928c31efe4306805c135

0c7788f065781d63ab90dd7a6b5

LAR contracts/diamond/libraries/LibApxReward.sol
7850ed7c240928d6e39d121f3870c67644b1c

56003dbe03a3122b53ebc828a5c

LBM contracts/diamond/libraries/LibBrokerManager.sol
777a8424367b2c01922f240952e7c2f5b1aa2

a8d4b0206135a013f468e45a7c1

LCP contracts/diamond/libraries/LibChainlinkPrice.sol
e3c1326b5d547a1817445d735ac802a337f7a

470ba1eab8cb4c6860341fd5fb1

LFM contracts/diamond/libraries/LibFeeManager.sol
0042478ec26a78d1e64551d9fb5764faafd910

8fcb5469c0875bc5539c73b05d

LLO contracts/diamond/libraries/LibLimitOrder.sol
06d12fc4a64d7315e956eb6871600ea76d4ae

7db50966f6559e027674c2cfad2

LPM contracts/diamond/libraries/LibPairsManager.sol
59153b65e28f17d34ada58c0bc5a5c09c26d0

62337b06dc9e64991dbe117da95

LPF contracts/diamond/libraries/LibPriceFacade.sol
ab0eb1cc16ae86a6fd030d5528349d5006508

fa6f4da5ffe8c12f23487abad43

LSR contracts/diamond/libraries/LibStakeReward.sol
21cb87df5000806324e2ff33fbf5856eddfbb04

2de3af0144f471a74aad5aa1a

LTC contracts/diamond/libraries/LibTradingConfig.sol
70d688e39555fc3fd91f1f6c4cf3e0f049bb982f

e28e85088c096dc6f53140a8

LVB contracts/diamond/libraries/LibVault.sol
77f015c5ffb1bb3f0072a0497713b77610bf911

d6ac4d27d63cc5520e649497c

AXI contracts/diamond/upgradeInitializers/ApolloXInit.sol
f435acceab751f8a6c780665b5d1425925dbd

ded4b9243d5030f791b9ab416bd

IWB contracts/dependencies/IWBNB.sol
977fd2f8dfa43437aa14d624768cbf85e0dc72

7b304f89c7d03d4f268190ae51

BIT contracts/utils/Bits.sol
98b01bac7d4fb1e34651578762778241e7ca8

d2dc845876e2171e8a832391074

AUDIT SCOPE APOLLOX - AUDIT 2

ID File SHA256 Checksum

ACE
contracts/diamond/facets/AccessControlEnumerable

Facet.sol

8ede30f95bae75c5524c757d8b80bb74dccf08

707165750d56f42e8e8e416614

CPF contracts/diamond/facets/ChainlinkPriceFacet.sol
d489e34bb961646b9cc9844f66fce4decefb59

ddd5ca2041f66d913f98d8965a

DCF contracts/diamond/facets/DiamondCutFacet.sol
d340ea66cdfb4762fecb1cd63787141057f8a3

463879994d1eac1702a2d43a09

DLF contracts/diamond/facets/DiamondLoupeFacet.sol
0e928d5d13fede05d6378208b919d900104c4

7229590b30892f9130f61ccc605

FMF contracts/diamond/facets/FeeManagerFacet.sol
14d1f231a13ae2c0c8db4bb0bd9747c71d282

d1e36219939e90d8e3f602a8ce9

PFB contracts/diamond/facets/PausableFacet.sol
65a98f9e86068aebff5f61c03ea926964a5c9a

635f84dc438a9272ee59939141

TRD contracts/diamond/facets/TradingConfigFacet.sol
05c6f52a8f499c6dce8c3aa89e2cae8c6061b0

46ffd131aeec698b35c39d3886

TRI contracts/diamond/facets/TradingCoreFacet.sol
2524aac3cc0978bd5f68a6e6d653b0b950416

1415bbebc508eb24d451349b818

TRF contracts/diamond/facets/TradingReaderFacet.sol
84045a01e2cd5329183049bd75676329559a

587c007d22be3ac92679d6953656

TFB contracts/diamond/facets/TransitionFacet.sol
9a898a5430fc8d8e67226dc3451c4a1410190

95267c6e439cdba51cd4a8bde5f

LDB contracts/diamond/libraries/LibDiamond.sol
12395822b35ab9c0e53a1a1c0a7ace5b530df

407ee41c2d00fee5c615fd2824f

LOA
contracts/diamond/libraries/LibOrderAndTradeHistor

y.sol

f07cbb8e837553706cb31fc7d04d6ccfa598e7

7dd676e5f81ab3fdb203c41f5e

LTB contracts/diamond/libraries/LibTrading.sol
27b9caedcb0190c8a10fc473edc27cb03ea8b

d9f6eeacf0787632bfe270a48e0

LIT contracts/diamond/libraries/LibTradingCore.sol
d85b105d9fa0227f2b4ffafac29ccb65f3a3bfd0

2d245267d34448bfc20cc5d3

OSB contracts/diamond/security/OnlySelf.sol
2f62700e47f0f84c6e02f68faf508cfaf8515874

d03d1caa02c09e929c92050f

PAU contracts/diamond/security/Pausable.sol
f8d3effea268c040731ef4ba08ca472a49b995c

8bdb679e07cc134ded52b6e5e

RGB contracts/diamond/security/ReentrancyGuard.sol
5867ff3568a305eecef3c05085757047f8ca466

d6f26b6a7b7c1d2c95f2e3da5

AUDIT SCOPE APOLLOX - AUDIT 2

ID File SHA256 Checksum

BIS contracts/utils/Bits.sol
98b01bac7d4fb1e34651578762778241e7ca8

d2dc845876e2171e8a832391074

COS contracts/utils/Constants.sol
3edbabd8143af5e40782952d823ae1381c3f1

c5f3f090d812f1acc9fbdc4436b

ALC contracts/ALP.sol
15f920de5d77abc3c0b16a9f24ad24c13ec7f0

8ccbe0c2c63b7c2a4bc119c50a

ACF
contracts/diamond/facets/AccessControlEnumerable

Facet.sol

70d769fb6dae8bf4c19882752950fa39ad4d7f

0b298f794533373cd481f237dd

ALM contracts/diamond/facets/AlpManagerFacet.sol
6fb4fbb7365b463706aba138adafec143af66e

25522700a89f0ffe3a78bc3cba

APX contracts/diamond/facets/ApxRewardFacet.sol
79d3c03c960f842798d676a11988c782be41b

6e4b2ab087c088aa756f719981c

BRO contracts/diamond/facets/BrokerManagerFacet.sol
97af7eb63449e13b393c05f541a25682d9aba

a19fdeedbe97dd033db91078b74

CHA contracts/diamond/facets/ChainlinkPriceFacet.sol
d489e34bb961646b9cc9844f66fce4decefb59

ddd5ca2041f66d913f98d8965a

DIA contracts/diamond/facets/DiamondCutFacet.sol
6754977d5831c0bad40ae4237816914f371eb

070e3388d93364872bcb8d05c38

DIM contracts/diamond/facets/DiamondLoupeFacet.sol
0e928d5d13fede05d6378208b919d900104c4

7229590b30892f9130f61ccc605

FEE contracts/diamond/facets/FeeManagerFacet.sol
14d1f231a13ae2c0c8db4bb0bd9747c71d282

d1e36219939e90d8e3f602a8ce9

LIM contracts/diamond/facets/LimitOrderFacet.sol
6045b843562083cfa8ad657a7fd64c8c79877

194b60d306876d6821d84e6f43d

OAH
contracts/diamond/facets/OrderAndTradeHistoryFac

et.sol

53e11977530f2755bbb0f1164a156dfa3efde3

18bc1e065b5503f2e5de684e19

PAI contracts/diamond/facets/PairsManagerFacet.sol
f435f48d9aafa2af803907131209d9d9ddb4c4

c1c2a6b99916a8c8fa40f71b2a

PFU contracts/diamond/facets/PausableFacet.sol
65a98f9e86068aebff5f61c03ea926964a5c9a

635f84dc438a9272ee59939141

PRI contracts/diamond/facets/PriceFacadeFacet.sol
f630cf0ee840600275c1119537d90b2236faf6

e2b997166e9cd2810c0da73ef4

STA contracts/diamond/facets/StakeRewardFacet.sol
df19200edf11c8c4b8c5d129e88a6678c6553d

7ff380ec219cf868080fe383b3

AUDIT SCOPE APOLLOX - AUDIT 2

ID File SHA256 Checksum

TIM contracts/diamond/facets/TimeLockFacet.sol
725c0a99e1d7aa26e9a94c8aa8079626b373

8157c2287e04e8320129a1d75410

TRN contracts/diamond/facets/TradingCheckerFacet.sol
1524450821c8e43648399b46962f3325847ea

01a3ba3aa919065b15c24042a3e

TRG contracts/diamond/facets/TradingCloseFacet.sol
cb532608d06f0c103b0671792632cc871df3af

be79c7888e34ee741853c154c7

TRC contracts/diamond/facets/TradingConfigFacet.sol
fa263e5c2f5eb55b890d6ce0f8f487a74d9082

eeb56be0e67d1571c8b7d9ce84

TRO contracts/diamond/facets/TradingCoreFacet.sol
2841a467762d402de7eb24f718e52981dc564

5216d11c83a38b2ad86971b2b2d

TRP contracts/diamond/facets/TradingOpenFacet.sol
f6ea980a058a7d877a792578567b39c50ec02

3d07e9df91cece2a42273f0529a

TRR contracts/diamond/facets/TradingPortalFacet.sol
674051ff73929267db4e1c91a28fd1538b1727

b856838125b09483f056b5ae04

TRE contracts/diamond/facets/TradingReaderFacet.sol
84045a01e2cd5329183049bd75676329559a

587c007d22be3ac92679d6953656

TFU contracts/diamond/facets/TransitionFacet.sol
9a898a5430fc8d8e67226dc3451c4a1410190

95267c6e439cdba51cd4a8bde5f

VFU contracts/diamond/facets/VaultFacet.sol
edf7c08d74885825e8e41434a825882b68e07

af325fbe258dddfd9777179d8e6

LAE
contracts/diamond/libraries/LibAccessControlEnume

rable.sol

dc16d922badf41b69e5475c0626c1310c5505f

f7baa9432eaf42cfeb49331771

LIL contracts/diamond/libraries/LibAlpManager.sol
e04970d31cd6887301f309f1094b9120c92b2

46346207dbf194b550284371b5a

LIP contracts/diamond/libraries/LibApxReward.sol
1d3bfa71791d7e7db969b18271fa987c47e54

72014128ae61f570aac1f0c3a5c

LIO contracts/diamond/libraries/LibBrokerManager.sol
065d7d47b7e03a1c5a2fc04ac85052d84c494

8c1393cc213778c8e132ee36933

LIC contracts/diamond/libraries/LibChainlinkPrice.sol
ad0a834fe8444d44341ad4514f3027bd31046f

c7b2b3fcf28e595567563d49e6

LDU contracts/diamond/libraries/LibDiamond.sol
12395822b35ab9c0e53a1a1c0a7ace5b530df

407ee41c2d00fee5c615fd2824f

LIF contracts/diamond/libraries/LibFeeManager.sol
34c2b5e1cd5989ef12a24eb9eeb8ea2c0f113

19f280be8fddcc57d7252d842b3

AUDIT SCOPE APOLLOX - AUDIT 2

ID File SHA256 Checksum

LII contracts/diamond/libraries/LibLimitOrder.sol
8f264939847f8bce8bf8c9990562ae1185bb6a

9f9112b9c817f86faa89504063

LOT
contracts/diamond/libraries/LibOrderAndTradeHistor

y.sol

f07cbb8e837553706cb31fc7d04d6ccfa598e7

7dd676e5f81ab3fdb203c41f5e

LIS contracts/diamond/libraries/LibPairsManager.sol
aaae64907d2673a52babd8b972df2933a3c16

0f4034b5780cbae2fbae9b71544

LIE contracts/diamond/libraries/LibPriceFacade.sol
0e4600f2bddcc2e0ded3353074d8ab7d39990

7818f19ee37f09411e472ed7425

LID contracts/diamond/libraries/LibStakeReward.sol
b2b2eb46dcdc0c0e2dbc74151af8bff38306b1

5e0bb3f1e1bf18ac89dcb154f4

LIN contracts/diamond/libraries/LibTimeLock.sol
2078c6cc2fe84cc9948d217ed45663347b0d6

88c907df24a7c6983965c4ebefd

LTU contracts/diamond/libraries/LibTrading.sol
27b9caedcb0190c8a10fc473edc27cb03ea8b

d9f6eeacf0787632bfe270a48e0

LI8 contracts/diamond/libraries/LibTradingConfig.sol
70d688e39555fc3fd91f1f6c4cf3e0f049bb982f

e28e85088c096dc6f53140a8

LIU contracts/diamond/libraries/LibTradingCore.sol
d85b105d9fa0227f2b4ffafac29ccb65f3a3bfd0

2d245267d34448bfc20cc5d3

LVU contracts/diamond/libraries/LibVault.sol
a2256f92e3a33b5f7c10b3bcc3334339e5d77

bc48a57b162d061c0ca3059d68f

OSU contracts/diamond/security/OnlySelf.sol
2f62700e47f0f84c6e02f68faf508cfaf8515874

d03d1caa02c09e929c92050f

PAS contracts/diamond/security/Pausable.sol
f8d3effea268c040731ef4ba08ca472a49b995c

8bdb679e07cc134ded52b6e5e

RGU contracts/diamond/security/ReentrancyGuard.sol
5867ff3568a305eecef3c05085757047f8ca466

d6f26b6a7b7c1d2c95f2e3da5

AII contracts/diamond/upgradeInitializers/ApolloXInit.sol
678551bef09f3e0ac65b85c4646830c01e362

9aaf41ce5c806d95220fe815dfa

AXU contracts/diamond/ApolloX.sol
7e9b7f3e12181e63e12ed87bb2c0af7eb8a64f

8f68761cddb10ad5612841b2ef

AUDIT SCOPE APOLLOX - AUDIT 2

APPROACH & METHODS APOLLOX - AUDIT 2

This report has been prepared for ApolloX to discover issues and vulnerabilities in the source code of the ApolloX - Audit 2

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS APOLLOX - AUDIT 2

FINDINGS APOLLOX - AUDIT 2

This report has been prepared to discover issues and vulnerabilities for ApolloX - Audit 2. Through this audit, we have

uncovered 30 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

ALP-01 Centralization Risks In ALP.Sol
Centralization /

Privilege
Major Acknowledged

AXB-02 Centralization Risks In ApolloX.Sol
Centralization /

Privilege
Major Acknowledged

FAC-01 Potential Reentrancy Attack Logical Issue Medium Acknowledged

LBM-01
brokerUpdate*() Functions Don't Update

The Storage

Language

Specific
Medium Resolved

LPF-01
LibPriceFacade.requestPriceCallback()

Can Be Too Gas Consuming
Volatile Code Medium Resolved

LPM-01
LibPairsManager.batchUpdatePairStatus(

) Always Reverts
Volatile Code Medium Resolved

PFF-01
PRICE_FEEDER_ROLE And KEEPER_ROLE

Can Manipulate The Prices

Centralization /

Privilege
Medium Acknowledged

AXI-01 supportsInterface() Is Inconsistent Inconsistency Minor Resolved

LAM-02
Lack Of Sanity Check In

LibAlpManager._calculateAlpAmount()
Volatile Code Minor Resolved

LAR-01
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

LBM-02
LibBrokerManager.removeBroker() Allows

Removing Of defaultBroker
Volatile Code Minor Resolved

FINDINGS APOLLOX - AUDIT 2

30
Total Findings

0
Critical

2
Major

5
Medium

16
Minor

7
Informational

ID Title Category Severity Status

LCP-01 Missing Validation On latestRoundData() Volatile Code Minor Resolved

LFM-01

LibFeeManager.chargeOpenFee() Doesn't

Update feeDetails.total If daoShareP

== 0

Volatile Code Minor Resolved

LPF-02
The Price From Oracle Explicitly Converted

To uint64
Volatile Code Minor Resolved

LPF-03
maxDelay Can Be Ignored By

PRICE_FEEDER_ROLE
Volatile Code Minor Resolved

LTC-01

Lack Of Sanity Check In

TradingConfigFacet.initTradingConfigFa

cet()

Volatile Code Minor Resolved

LVB-01
Strict Comparison In

LibVault.decreaseByCloseTrade()
Volatile Code Minor Resolved

PMF-01
Inconsistent Checks In

_leverageMarginsCheck()
Inconsistency Minor Resolved

TCF-01

Zero entryPrice Returned By

TradingCheckerFacet.marketTradeCallbac

kCheck()

Logical Issue Minor Resolved

TOF-01

Wrong OrderInfo.amountIn Saved To

History When New openTrade Is Created

By

TradingOpenFacet.marketTradeCallback(

)

Inconsistency Minor Resolved

TPF-02
TradingPortalFacet.addMargin() Allows

To Increase Margin If PairStatus.CLOSE
Volatile Code Minor Resolved

TRA-01
TradingCloseFacet._decreaseByCloseTrad

e() Can't Extract All openTradeAmountIns
Volatile Code Minor Resolved

VFB-01 No Upper Limits For Fees Logical Issue Minor Resolved

CON-01 Typos Coding Style Informational Resolved

FINDINGS APOLLOX - AUDIT 2

ID Title Category Severity Status

CON-02 Redundant Code Coding Style Informational Resolved

DIA-03 Incompatibility With Deflationary Tokens Logical Issue Informational Resolved

LAM-01 Time Units Can Be Used Magic Numbers Informational Resolved

LAM-03
coolingDuration Can Be Avoided By

Whitelisted ALP Owners
Volatile Code Informational Resolved

LIB-01 Basis Point Values Are Referred As Percent Inconsistency Informational Resolved

LVB-02
Redundant Usage Of LibVault

Namespace
Coding Style Informational Resolved

FINDINGS APOLLOX - AUDIT 2

ALP-01 CENTRALIZATION RISKS IN ALP.SOL

Category Severity Location Status

Centralization /

Privilege
Major

contracts/ALP.sol (base): 35, 39, 43, 48, 53, 58, 6

3, 74
Acknowledged

Description

In the contract ALP the role ADMIN_ROLE has authority over the functions shown in the diagram below.

Function Function Calls

Authenticated Role

Function

Function

Function Function Calls

Function

Function

unpause _unpause

ADMIN_ROLE

removeFromWhiteList

addToWhiteList

pause

removeToWhiteList

addFromWhiteList

_pause

ALP-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L35-L35
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L39-L39
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L43-L43
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L48-L48
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L53-L53
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L58-L58
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L63-L63
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/ALP.sol#L74-L74

In the contract ALP the role MINTER_ROLE has authority over the functions shown in the diagram below.

Function Function CallsAuthenticated Role

mint _mintMINTER_ROLE

In the contract ALP the role UPGRADER_ROLE has authority over the functions shown in the diagram below.

Authenticated Role Function

UPGRADER_ROLE _authorizeUpgrade

Any compromise to the privileged roles may allow the hacker to take advantage of this and

mint() any amount of ALP

upgradeTo() any other implementation contract

pause() / unpause() , update whitelists

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

ALP-01 APOLLOX - AUDIT 2

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Project Team]: We will not implement the time lock for parameter update because we need to make rapid reactions to

adjust parameters based on market situation. Moreover, we have actually added the time lock for upgrade which is managed

by a multi-signature address. We plan to distribute more rights (including the management of multi-signature etc) to our DAO

governance to achieve even higher decentralization.

ALP-01 APOLLOX - AUDIT 2

AXB-02 CENTRALIZATION RISKS IN APOLLOX.SOL

Category Severity Location Status

Centralization / Privilege Major contracts/diamond/ApolloX.sol (base): 35 Acknowledged

Description

In the contract ApolloX

the role DEPLOYER_ROLE has the authority to upgrade all facets and initialize them.

the role DEFAULT_ADMIN_ROLE has the authority to edit other roles.

other roles can perform sensitive operations.

Any compromise to the privileged roles may allow the hacker to take advantage of this and

upgrade any facet with new functionality

add/remove pairs/brokers/commissions, etc.

update staking reward via updateApxPerBlock()

provide any prices and execute the orders

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

AXB-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/ApolloX.sol#L35-L35

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Project Team]: We will not implement the time lock for parameter update because we need to make rapid reactions to

adjust parameters based on market situation. Moreover, we have actually added the time lock for upgrade which is managed

by a multi-signature address. We plan to distribute more rights (including the management of multi-signature etc) to our DAO

governance to achieve even higher decentralization.

AXB-02 APOLLOX - AUDIT 2

FAC-01 POTENTIAL REENTRANCY ATTACK

Category Severity Location Status

Logical

Issue
Medium

contracts/diamond/facets/ApxRewardFacet.sol (base): 26; contrac

ts/diamond/facets/BrokerManagerFacet.sol (base): 95
Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects.

ApxRewardFacet.addReserves() performs an external call to rewardToken.transferFrom() and only after that

updates the contract state. Can't be exploited.

BrokerManagerFacet.withdrawCommission() performs an external call to token.safeTransfer() and only after

that updates c.pending = 0 . This function can be exploited by anyone. As a result, the broker will get

allPendingCommissions of all tokens of all other brokers.

LimitOrderFacet.openLimitOrder() performs an external call to token.safeTransferFrom() and updates the

contract state. Can't be exploited.

LimitOrderFacet.executeLimitOrder() performs an external call to token.safeTransfer() and only after that

updates the contract state via _removeOrder() . Can be exploited. As a result, the same order can be canceled with

a refund or executed twice.

Also affected:

LimitOrderFacet.cancelLimitOrder()

TradingPortalFacet.openMarketTrade()

TradingPortalFacet.addMargin()

VaultFacet.addToken()

TradingCloseFacet.executeTpSlOrLiq()

TradingPortalFacet.addMargin()

and others.

Recommendation

We recommend protecting all the external functions not supposed to be re-entered by applying OpenZeppelin

ReentrancyGuard library - nonReentrant modifier to prevent reentrancy attack.

Alleviation

FAC-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/ApxRewardFacet.sol#L26-L26
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/BrokerManagerFacet.sol#L95-L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol

[Project Team]: We should be cautious when calling unknown contracts as they may be malicious and potentially cause a

reentrancy attack. Therefore, it is important to ensure that all called contracts are known and trustworthy, or to use libraries

such as OpenZeppelin's ReentrancyGuard for reentrancy protection. As the external contracts are added by accounts with

permissions, only known contracts like USDT/USDC/WBNB are added, which are not malicious contracts. Adding

ReentrancyGuard , however, will result in additional gas consumption.

FAC-01 APOLLOX - AUDIT 2

LBM-01 brokerUpdate*() FUNCTIONS DON'T UPDATE THE

STORAGE

Category Severity Location Status

Language Specific Medium contracts/diamond/libraries/LibBrokerManager.sol (base): 81~85 Resolved

Description

81 function _checkBrokerExist(BrokerManagerStorage storage bms, uint24 id)

private view returns (Broker memory) {

82 Broker memory b = bms.brokers[id];

83 require(b.receiver != address(0), "LibBrokerManager: broker does not

exist");

84 return b;

85 }

LibBrokerManager._checkBrokerExist() returns Broker memory .

114 Broker memory b = _checkBrokerExist(bms, id);

115 address oldReceiver = b.receiver;

116 b.receiver = receiver;

memory structure is updated in updateBrokerReceiver() and other functions. As a result, the storage is left intact.

Recommendation

We recommend returning Broker storage from _checkBrokerExist() .

LBM-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibBrokerManager.sol#L81-L85

LPF-01 LibPriceFacade.requestPriceCallback() CAN BE TOO GAS

CONSUMING

Category Severity Location Status

Volatile Code Medium contracts/diamond/libraries/LibPriceFacade.sol (base): 120 Resolved

Description

Users can create very big number of orders and price requests via TradingPortalFacet.openMarketTrade() in the same

block. Then PRICE_FEEDER_ROLE will be unable to execute PriceFacadeFacet.requestPriceCallback() due to gas

limitation.

In LibPriceFacade.requestPriceCallback()

all the requests are copied into memory from pfs.pendingPrices[requestId]

all the requests are processed and then deleted from storage

As a result, the created orders will not be processed and the price feeder will be stuck.

Recommendation

We recommend limiting the number of open orders per block or introducing partial price request processing.

LPF-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPriceFacade.sol#L120-L120

LPM-01 LibPairsManager.batchUpdatePairStatus() ALWAYS

REVERTS

Category Severity Location Status

Volatile Code Medium contracts/diamond/libraries/LibPairsManager.sol (base): 286 Resolved

Description

286 for (UC i = ZERO; i <= uc(pairBases.length); i = i + ONE) {

287 Pair storage pair = pms.pairs[pairBases[i.into()]];

Indexing pairBases[pairBases.length] is not allowed and will always revert.

Recommendation

We recommend using i < uc(pairBases.length) instead.

LPM-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPairsManager.sol#L286-L286

PFF-01 PRICE_FEEDER_ROLE AND KEEPER_ROLE CAN MANIPULATE

THE PRICES

Category Severity Location Status

Centralization /

Privilege
Medium

contracts/diamond/facets/PriceFacadeFacet.sol

(base): 51
Acknowledged

Description

The trading works this way:

1. The user calls TradingPortalFacet.openMarketTrade() , creates pendingTrades and updates pendingPrice

2. PRICE_FEEDER_ROLE provides the price via PriceFacadeFacet.requestPriceCallback()

3. If the price gapPercentage <= pfs.highPriceGapP the price is considered valid and cached to callbackPrices

4. pendingPrices[requestId] processed and marketTradeCallback() / closeTradeCallback() are called

As a result, PRICE_FEEDER_ROLE can change the cached price via many calls by steps not bigger than highPriceGapP .

Limit orders work similar way:

1. The user calls LimitOrderFacet.openLimitOrder() , creates limitOrders

2. KEEPER_ROLE provides the price via LimitOrderFacet.executeLimitOrder()

3. If the price gapPercentage <= pfs.highPriceGapP the price is considered valid and cached to callbackPrices

via PriceFacadeFacet.confirmTriggerPrice()

4. LibLimitOrder.executeLimitOrder() is called

As a result, KEEPER_ROLE can change the cached price via many calls by steps not bigger than highPriceGapP .

Changing the price allows the privileged roles to manipulate the market and execute the orders not supposed to be

executed.

Scenario

Consider the scenario:

1. KEEPER_ROLE takes any isLong limit order with low order.limitPrice , takes beforePrice =

pfs.callbackPrices[token] .

2. KEEPER_ROLE calculates newPrice so, that (beforePrice - newPrice) * 1e4 / beforePrice =

pfs.highPriceGapP . That means that newPrice is lower than beforePrice by beforePrice *

pfs.highPriceGapP / 1e4 .

PFF-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/PriceFacadeFacet.sol#L51-L51

3. KEEPER_ROLE calls LimitOrderFacet.executeLimitOrder() with executeOrders =

KeeperExecution(orderHash, newPrice) .

4. pfs.callbackPrices[token] gets updated by (newPrice, block.timestamp) .

5. The order is not executed since TradingCheckerFacade.executeLimitOrderCheck() returns (false, 0, 0,

Refund.USER_PRICE) .

6. KEEPER_ROLE repeats steps 2-4 until the order is executed.

PRICE_FEEDER_ROLE can perform similar price manipulations.

Recommendation

We recommend caching and using the prices only received from LibChainlinkPrice.getPriceFromChainlink(token) .

Alleviation

[Project Team]: PRICE_FEEDER_ROLE will be assigned to the Binance Oracle address to avoid relying on a single price

source. We are using both Binance Oracle and Chainlink prices to ensure a diverse set of prices. When selecting a reference

price, we will use the most recent price available.

PFF-01 APOLLOX - AUDIT 2

AXI-01 supportsInterface() IS INCONSISTENT

Category Severity Location Status

Inconsistency Minor contracts/diamond/upgradeInitializers/ApolloXInit.sol (base): 16~25 Resolved

Description

Diamond initialization works this way:

1. ApolloXInit contract is deployed with init() function

2. ApolloX contract is deployed with ApolloXInit address specified as _init argument

3. ApolloX constructor calls ApolloXInit.init() function via delegatecall()

4. init() adds 3 interfaces to DiamondStorage.supportedInterfaces and 3 more to

LibAccessControlEnumerable.supportedInterfaces

Both DiamondLoupeFacet and AccessControlEnumerableFacet have supportsInterface() functions, each using its

own storage.

It is unclear which one will be used by the Diamond and unclear why the Diamond needs both of them.

Recommendation

We recommend leaving only one supportsInterface() function and storing all supportedInterfaces at one facet.

AXI-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/upgradeInitializers/ApolloXInit.sol#L16-L25

LAM-02 LACK OF SANITY CHECK IN
LibAlpManager._calculateAlpAmount()

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibAlpManager.sol (base): 85~86, 128~129 Resolved

Description

85 // ∵ alpPrice_ > 0

86 // ∴ (LibVault.getTotalValueUsd() + lpUnPnlUsd) > 0

The code has ensured that alpPrice > 0 and assumes that (LibVault.getTotalValueUsd() + lpUnPnlUsd) > 0 . That

value is explicitly converted to uint256 .

However, if totalValueUsd < 0 and alp.totalSupply == 0 , the _alpPrice(totalValueUsd) returns positive value

1e8 . So, in some circumstances LibVault.getTotalValueUsd() + lpUnPnlUsd can be negative.

Recommendation

We recommend explicitly checking the value is non-negative before uint256 conversion. We recommend adding int256

totalValueUsd = LibVault.getTotalValueUsd() + lpUnPnlUsd to avoid redundant calculations.

LAM-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibAlpManager.sol#L85-L86
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibAlpManager.sol#L128-L129

LAR-01 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibApxReward.sol (base): 148 Resolved

Description

148 ars.rewardToken.transferFrom(msg.sender, address(this), amount);

The return value of the transfer() / transferFrom() call is not checked.

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We advise

using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

LAR-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L148-L148
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

LBM-02 LibBrokerManager.removeBroker() ALLOWS REMOVING

OF defaultBroker

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibBrokerManager.sol (base): 100 Resolved

Description

LibBrokerManager.removeBroker() doesn't check that the removed broker is defaultBroker . defaultBroker is used

by updateBrokerCommission() in case the requested broker is absent. In case it was removed, the commissions will be

accumulated for the same id and can be withdrawn if a new broker with the same id will be added in the future.

Recommendation

We recommend preventing of defaultBroker removal.

LBM-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibBrokerManager.sol#L100-L100

LCP-01 MISSING VALIDATION ON latestRoundData()

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibChainlinkPrice.sol (base): 65~66 Resolved

Description

65 (, int256 price_, uint256 startedAt_,,) = oracle.latestRoundData();

66 price = uint256(price_);

The price provided by oracle.latestRoundData() can theoretically be negative. In this case, it is silently converted to

uint256 .

Recommendation

We recommend checking the return values of third-party services and reverting in case of unexpected.

LCP-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibChainlinkPrice.sol#L65-L66

LFM-01 LibFeeManager.chargeOpenFee() DOESN'T UPDATE

feeDetails.total IF daoShareP == 0

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibFeeManager.sol (base): 120~124, 141 Resolved

Description

120 if (daoShare > 0) {

121 IERC20(token).safeTransfer(fms.daoRepurchase, daoShare);

122 detail.total += feeAmount;

123 detail.daoAmount += daoShare;

124 }

LibFeeManager allows daoShareP to be zero. However, in this case, the LibFeeManager.chargeOpenFee() doesn't

update feeDetails[token].total . FeeManagerFacet.getFeeDetails() will return incorrect results.

chargeCloseFee() is also affected.

Recommendation

We recommend updating the detail.total in any case.

LFM-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibFeeManager.sol#L120-L124
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibFeeManager.sol#L141-L141

LPF-02 THE PRICE FROM ORACLE EXPLICITLY CONVERTED TO
uint64

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibPriceFacade.sol (base): 170 Resolved

Description

LibPriceFacade.getPriceFromCacheOrOracle() gets the uint256 price by

LibChainlinkPrice.getPriceFromChainlink() and than explicitly converts it to uint64 . This can lead to a accidental

hidden overflow that will get unnoticed.

Recommendation

We recommend explicitly checking that the provided by the third-party values fit into uint64 .

LPF-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPriceFacade.sol#L170-L170

LPF-03 maxDelay CAN BE IGNORED BY PRICE_FEEDER_ROLE

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibPriceFacade.sol (base): 135~138 Resolved

Description

135 // The time interval is too long.

136 // receive the current price but not use it

137 // and wait for the next price to be feed.

138 if (block.timestamp > updatedAt + pfs.maxDelay) {

In LibPriceFacede.requestPriceCallback() the PRICE_FEEDER_ROLE provides the price . If the beforePrice

extracted by getPriceFromCacheOrOracle() was stored there more than pfs.maxDelay time ago, then the provided

price is "rejected".

However, since that price is saved to pfs.callbackPrices[pendingPrice.token] with the current block.timestamp ,

the next call to requestPriceCallback() by PRICE_FEEDER_ROLE with the same arguments will be successful: the price

will be used, callbacks called, pendingPrices deleted.

Recommendation

We recommend clarifying the intended logic of pfs.maxDelay .

Alleviation

[Project Team]: We use both Binance Oracle and Chainlink price feeds. If the Chainlink price has not been updated for a

period exceeding maxDelay , we consider it unreliable and only use the Binance Oracle price. To ensure the accuracy of the

price, we reject the first price and accept the second price, which is equivalent to a two-step confirmation process.

LPF-03 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPriceFacade.sol#L135-L138

LTC-01 LACK OF SANITY CHECK IN
TradingConfigFacet.initTradingConfigFacet()

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibTradingConfig.sol (base): 35 Resolved

Description

35 require(tcs.executionFeeUsd == 0 && tcs.minNotionalUsd == 0 &&

tcs.maxTakeProfitP == 0, "LibTradingConfig: Already initialized");

TradingConfigFacet.initTradingConfigFacet() is supposed to be called once by DEPLOYER_ROLE . The check above is

supposed to ensure that. However, all three argument values can and probably will be 0, initTradingConfigFacet()

doesn't enforce the arguments to be non-zero.

Recommendation

We recommend adding require(minNotionalUsd > 0 && maxTakeProfitP > 0) to make the function consistent with

other library setters.

LTC-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibTradingConfig.sol#L35-L35

LVB-01 STRICT COMPARISON IN
LibVault.decreaseByCloseTrade()

Category Severity Location Status

Volatile Code Minor contracts/diamond/libraries/LibVault.sol (base): 214 Resolved

Description

214 require(index.into() > 0 && otherTokenAmountUsd < totalBalanceUsd,

"LibVault: Insufficient funds in the treasury");

The code requires otherTokenAmountUsd to be strictly less than totalBalanceUsd , however, equal balances are also

enough to finish the operation.

Recommendation

We recommend using otherTokenAmountUsd <= totalBalanceUsd instead.

LVB-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L214-L214

PMF-01 INCONSISTENT CHECKS IN _leverageMarginsCheck()

Category Severity Location Status

Inconsistency Minor contracts/diamond/facets/PairsManagerFacet.sol (base): 141 Resolved

Description

PairsManagerFacet._leverageMarginsCheck() performs checks of leverageMargins .

The check lm.tier >= leverageMargins[(i + ONE).into()].tier is redundant since lm.tier != (i + ONE).into()

check is performed.

It is not ensured that lm.initialLostP > nextLm.initialLostP .

Recommendation

We recommend rewriting the conditions in require() form (ensuring the conditions are satisfied instead of looking for

unsatisfied). We recommend adding the missing condition and removing redundant one.

PMF-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/PairsManagerFacet.sol#L141-L141

TCF-01 ZERO entryPrice RETURNED BY

TradingCheckerFacet.marketTradeCallbackCheck()

Category Severity Location Status

Logical Issue Minor contracts/diamond/facets/TradingCheckerFacet.sol (base): 389 Resolved

Description

389 return (false, 0, 0, entryPrice, Refund.TP);

entryPrice is zero here. tuple.entryPrice is supposed to be returned. The value is unused by the caller.

Recommendation

We recommend using tuple.entryPrice here.

TCF-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCheckerFacet.sol#L389-L389

TOF-01 WRONG OrderInfo.amountIn SAVED TO HISTORY WHEN

NEW openTrade IS CREATED BY
TradingOpenFacet.marketTradeCallback()

Category Severity Location Status

Inconsistency Minor contracts/diamond/facets/TradingOpenFacet.sol (base): 47 Resolved

Description

TradingOpenFacet._marketTrade() calls OrderAndTradeHistoryFacet.marketTrade() with OrderInfo.amountIn

argument ot.margin + ot.openFee . The real amountIn value was bigger by ot.executionFee .

For example, when LibLimitOrder.openLimitOrder() calls OrderAndTradeHistoryFacet.createLimitOrder() , it uses

full amountIn transferred from the user.

TradingPortalFacet.addMargin() also saves the full margin received via OrderAndTradeHistory.updateMargin() .

Recommendation

We recommend saving ot.margin + ot.openFee + ot.executionFee in a call to

OrderAndTradeHistoryFacet.marketTrade() .

TOF-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingOpenFacet.sol#L47-L47

TPF-02 TradingPortalFacet.addMargin() ALLOWS TO INCREASE

MARGIN IF PairStatus.CLOSE

Category Severity Location Status

Volatile Code Minor contracts/diamond/facets/TradingPortalFacet.sol (base): 138 Resolved

Description

TradingPortalFacet.addMargin() can be executed even if TradingConfig.marketTrading is unset or

getPairForTrading(ot.pairBase).status is PairStatus.CLOSE .

Recommendation

We recommend clarifying the intended behavior.

Alleviation

[Project Team]: The act of adding collateral does not change any behavior of LP or ALP, and is intentionally designed to be

independent of the trading pair and market conditions.

TPF-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingPortalFacet.sol#L138-L138

TRA-01 TradingCloseFacet._decreaseByCloseTrade() CAN'T

EXTRACT ALL openTradeAmountIns

Category Severity Location Status

Volatile Code Minor contracts/diamond/facets/TradingCloseFacet.sol (base): 181 Resolved

Description

TradingCloseFacet._decreaseByCloseTrade() calculates the total openTradeAmountIns in USD as totalBalanceUsd .

otherTokenAmountUsd is the amount in USD required to fulfill the request.

181 require(otherTokenAmountUsd < totalBalanceUsd, "TradingCloseFacet:

Insufficient funds in the openTrade");

The require() statement checks if otherTokenAmountUsd is strictly below totalBalanceUsd . However, equal amounts

also should be acceptable.

Recommendation

We recommend using <= instead of < .

TRA-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCloseFacet.sol#L181-L181

VFB-01 NO UPPER LIMITS FOR FEES

Category Severity Location Status

Logical Issue Minor contracts/diamond/facets/VaultFacet.sol (base): 32, 44 Resolved

Description

There is no upper limit restricting parameter of VaultFacet.addToken() , potentially enabling even more than 100% of

feeBasisPoints , taxBasisPoints .

Recommendation

We recommend setting an upper limit for fees.

VFB-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/VaultFacet.sol#L32-L32
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/VaultFacet.sol#L44-L44

CON-01 TYPOS

Category Severity Location Status

Coding

Style
Informational

contracts/diamond/facets/AlpManagerFacet.sol (base): 49, 58; contr

acts/diamond/facets/LimitOrderFacet.sol (base): 47; contracts/diam

ond/facets/TradingCheckerFacet.sol (base): 35, 202; contracts/diam

ond/facets/VaultFacet.sol (base): 47; contracts/diamond/libraries/Lib

LimitOrder.sol (base): 42; contracts/diamond/libraries/LibPriceFacad

e.sol (base): 137; contracts/diamond/libraries/LibVault.sol (base): 6

9, 134; contracts/utils/Constants.sol (base): 20

Resolved

Description

20 bytes32 constant STAKE_OPERATOR_ROLE = keccak256("STAKE_OPERATOR");

In Constants.sol all the other roles contain the "ROLE" word, like "TOKEN_OPERATOR_ROLE". For consistency, we

recommend updating the STAKE_OPERATOR_ROLE string literal and hash.

69 require(vs.wbnb == address(0), "LibAlpManager: Already initialized");

In LibVault.initialize() LibAlpManager is mentioned.

134 function updateAsMagin(address tokenAddress, bool asMagin) internal {

In LibVault.updateAsMagin() the word Margin is written as Magin .

137 // and wait for the next price to be feed.

"feed" is supposed to be "fed".

58 require(alpAmount >= minAlp, "LibLiquidity: insufficient ALP output");

"LibLiquidity" is supposed to be "AlpManagerFacet".

"LimitBookFacet" is supposed to be "LimitOrderFacet".

35 // stopLoss price below the liquidation price is meaningless

When the order is not isLong , the stopLoss price above the liquidation price is meaningless.

CON-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/AlpManagerFacet.sol#L49-L49
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/AlpManagerFacet.sol#L58-L58
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/LimitOrderFacet.sol#L47-L47
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCheckerFacet.sol#L35-L35
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCheckerFacet.sol#L202-L202
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/VaultFacet.sol#L47-L47
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibLimitOrder.sol#L42-L42
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPriceFacade.sol#L137-L137
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L69-L69
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L134-L134
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/utils/Constants.sol#L20-L20

202 // Comparison of the values of price and limitPrice + slippege

"slippege" is supposed to be "slippage".

Recommendation

We recommend fixing the typos.

CON-01 APOLLOX - AUDIT 2

CON-02 REDUNDANT CODE

Category Severity Location Status

Coding

Style
Informational

contracts/diamond/ApolloX.sol (base): 41~46; contracts/utils/Cons

tants.sol (base): 4~6
Resolved

Description

41 LibDiamond.DiamondStorage storage ds;

42 bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;

43 // get diamond storage

44 assembly {

45 ds.slot := position

46 }

The code in ApolloX.fallback() reimplements the LibDiamond.diamondStorage() . Can be rewritten as

LibDiamond.DiamondStorage storage ds = LibDiamond.diamondStorage(); .

4 type Price8 is uint64;

5 type Qty10 is uint80;

6 type Usd18 is uint96;

The types and constants PRICE_DECIMALS - FUNDING_FEE_RATE_DIVISOR from Constants library are never used.

Recommendation

We recommend following the recommendations.

CON-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/ApolloX.sol#L41-L46
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/utils/Constants.sol#L4-L6

DIA-03 INCOMPATIBILITY WITH DEFLATIONARY TOKENS

Category Severity Location Status

Logical

Issue
Informational

contracts/diamond/facets/ApxRewardFacet.sol (base): 28; contract

s/diamond/facets/StakeRewardFacet.sol (base): 32, 37; contracts/di

amond/libraries/LibApxReward.sol (base): 105, 124, 148, 149; contr

acts/diamond/libraries/LibStakeReward.sol (base): 63, 66, 78, 79

Resolved

Description

When transferring deflationary ERC20 tokens, the input amount may not be equal to the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrived to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Recommendation

We recommend carefully managing the token list supported by the project and avoiding adding deflationary tokens.

Alleviation

[Project Team]: As the external contracts are added by accounts with permissions, only known contracts like

USDT/USDC/WBNB are added.

DIA-03 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/ApxRewardFacet.sol#L28-L28
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/StakeRewardFacet.sol#L32-L32
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/StakeRewardFacet.sol#L37-L37
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L105-L105
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L124-L124
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L148-L148
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L149-L149
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L63-L63
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L66-L66
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L78-L78
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L79-L79

LAM-01 TIME UNITS CAN BE USED

Category Severity Location Status

Magic Numbers Informational contracts/diamond/libraries/LibAlpManager.sol (base): 35 Resolved

Description

34 // default 30 minutes

35 ams.coolingDuration = 1800;

Time unit minutes can be used.

Recommendation

We recommend using 30 minutes instead of 1800 and removing the comment.

LAM-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibAlpManager.sol#L35-L35

LAM-03 coolingDuration CAN BE AVOIDED BY WHITELISTED ALP

OWNERS

Category Severity Location Status

Volatile Code Informational contracts/diamond/libraries/LibAlpManager.sol (base): 15~16 Resolved

Description

LibAlpManager manages lastMintedAt parameter of each user and doesn't allow to burnAlp() / burnAlpBNB() if

coolingDuration has not yet expired since last mint.

However, members of ALP.fromWhiteList and ALP.toWhiteList can avoid that limitation and burn immediately by

transferring of minted ALP to another address.

Recommendation

We recommend adding to whitelists only the accounts that are not supposed to burn ALP.

Alleviation

[Project Team]: Currently only one contract address, ApolloX, has been added to the whitelist of ALP contracts.

LAM-03 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibAlpManager.sol#L15-L16

LIB-01 BASIS POINT VALUES ARE REFERRED AS PERCENT

Category Severity Location Status

Inconsistency Informational

contracts/diamond/libraries/LibBrokerManager.sol (base): 20; co

ntracts/diamond/libraries/LibFeeManager.sol (base): 20~21, 33;

contracts/diamond/libraries/LibPriceFacade.sol (base): 34~35, 1

26; contracts/diamond/libraries/LibVault.sol (base): 42

Resolved

Description

42 uint16 securityMarginP; // %

Many values hold basis points (1.0 is represented as 10000), however, they commented as % and have the P suffix in

their names.

126 uint gapPercentage = priceGap * 1e4 / beforePrice;

Using the word "percentage" for the value in basis points is incorrect. The "percentage" refers to a value out of 100, while

basis points refer to a value out of 10000

Recommendation

We recommend updating the comments to "// basis points" to avoid ambiguity and replacing P suffix with BPS . We

recommend renaming LibVault.AvailableToken.weight to weightBPS , etc.

Alleviation

Comments were updated.

LIB-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibBrokerManager.sol#L20-L20
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibFeeManager.sol#L20-L21
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibFeeManager.sol#L33-L33
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPriceFacade.sol#L34-L35
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibPriceFacade.sol#L126-L126
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L42-L42

LVB-02 REDUNDANT USAGE OF LibVault NAMESPACE

Category Severity Location Status

Coding Style Informational contracts/diamond/libraries/LibVault.sol (base): 249 Resolved

Description

249 LibVault.VaultStorage storage vs = LibVault.vaultStorage();

In LibVault library it is not required to mention LibVault namespace to access own structures and methods.

Recommendation

We recommend omitting of LibVault namespace wherever possible. Like this:

249 VaultStorage storage vs = vaultStorage();

LVB-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L249-L249

OPTIMIZATIONS APOLLOX - AUDIT 2

ID Title Category Severity Status

DIA-01 Tautology
Gas

Optimization
Optimization Resolved

DIA-02 Arguments Should Be calldata
Gas

Optimization
Optimization Resolved

FAC-03 _check() Argument Can Be Declared storage
Gas

Optimization
Optimization Resolved

LAC-01
Redundant Data In

LibAccessControlEnumerable

Gas

Optimization
Optimization Acknowledged

LIB-02 Unnecessary Use Of SafeMath
Gas

Optimization
Optimization Resolved

LIB-03
memory Variable Can Be Used Instead Of

storage

Gas

Optimization
Optimization Resolved

OAT-01
OrderAndTradeHistoryFacet.getOrderAndTrade

History() Is Gas Consuming

Gas

Optimization
Optimization Resolved

TRA-02
TradingCloseFacet._transferToUserForClose(

) Can Be Optimized
Coding Style Optimization Resolved

OPTIMIZATIONS APOLLOX - AUDIT 2

DIA-01 TAUTOLOGY

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/facets/ApxRewardFacet.sol (base): 14, 15; c

ontracts/diamond/libraries/LibApxReward.sol (base): 155
Resolved

Description

Comparisons that are always true are unnecessary.

14 require(_apxPerBlock >= 0, "Invalid _apxPerBlock");

15 require(_startBlock >= 0, "Invalid _startBlock");

155 require(_apxPerBlock >= 0, "apxPerBlock greater than 0");

Recommendation

We recommend clarifying the intended behavior (if zero values are expected or not) and either removing require() or

using strict comparisons (>). We recommend updating the error messages to reflect the expected conditions.

DIA-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/ApxRewardFacet.sol#L14-L14
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/ApxRewardFacet.sol#L15-L15
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L155-L155

DIA-02 ARGUMENTS SHOULD BE calldata

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/facets/OrderAndTradeHistoryFacet.sol (bas

e): 19; contracts/diamond/facets/PairsManagerFacet.sol (base):

61~63, 119; contracts/diamond/facets/TradingCheckerFacet.sol

(base): 226, 424; contracts/diamond/facets/VaultFacet.sol (bas

e): 28, 35, 53; contracts/diamond/libraries/LibVault.sol (base): 79

Resolved

Description

Non changed arguments of external functions are declared as memory .

Recommendation

We recommend declaring the non changed arguments of external functions as calldata to save gas.

DIA-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/OrderAndTradeHistoryFacet.sol#L19-L19
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/PairsManagerFacet.sol#L61-L63
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/PairsManagerFacet.sol#L119-L119
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCheckerFacet.sol#L226-L226
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCheckerFacet.sol#L424-L424
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/VaultFacet.sol#L28-L28
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/VaultFacet.sol#L35-L35
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/VaultFacet.sol#L53-L53
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L79-L79

FAC-03 _check() ARGUMENT CAN BE DECLARED storage

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/facets/TradingCloseFacet.sol (base): 384; c

ontracts/diamond/facets/TradingPortalFacet.sol (base): 20
Resolved

Description

TradingPortalFacet._check() accepts memory ot argument. All the function callers provide storage data structure.

TradingCloseFacet._removeOpenTrade() is also affected.

Recommendation

We recommend declaring ot argument as storage to avoid redundant copying.

FAC-03 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCloseFacet.sol#L384-L384
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingPortalFacet.sol#L20-L20

LAC-01 REDUNDANT DATA IN LibAccessControlEnumerable

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/libraries/LibAccessControlEnumerabl

e.sol (base): 60~64
Acknowledged

Description

60 if (!hasRole(role, account)) {

61 acs.roles[role].members[account] = true;

62 emit RoleGranted(role, account, msg.sender);

63 }

64 acs.roleMembers[role].add(account);

acs.roleMembers can be updated only if !hasRole(role, account) (account doesn't have the role already).

RoleData.members and RoleData structure in general are redundant. roleMembers uses EnumerableSet.AddressSet

to store members of role in an enumerable way. As a result, holding members as part of roles structure is not required.

Recommendation

We recommend replacing mapping(bytes32 => RoleData) roles structure with mapping(bytes32 => bytes32)

roleAdmins . We recommend using acs.roleMembers[role].contains(account) in hasRole() .

Alleviation

[Project Team]: This contract is already running online, and modifying the data storage layout may cause unforeseen

problems. These are the contracts we have already deployed:

https://louper.dev/diamond/0x1b6F2d3844C6ae7D56ceb3C3643b9060ba28FEb0?network=binance

LAC-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibAccessControlEnumerable.sol#L60-L64
https://louper.dev/diamond/0x1b6F2d3844C6ae7D56ceb3C3643b9060ba28FEb0?network=binance

LIB-02 UNNECESSARY USE OF SAFEMATH

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/libraries/LibApxReward.sol (base): 173, 174,

175; contracts/diamond/libraries/LibStakeReward.sol (base): 6

4, 65, 76, 77

Resolved

Description

With Solidity compiler versions 0.8.0 or newer, arithmetic operations will automatically revert in case of integer overflow or

underflow. SafeMath library is used for uint256 type in LibApxReward and LibStakeReward contracts.

Recommendation

We recommend removing the usage of SafeMath library and using the built-in arithmetic operations provided by the Solidity

programming language.

LIB-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L173-L173
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L174-L174
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibApxReward.sol#L175-L175
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L64-L64
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L65-L65
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L76-L76
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibStakeReward.sol#L77-L77

LIB-03 memory VARIABLE CAN BE USED INSTEAD OF storage

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/libraries/LibChainlinkPrice.sol (base): 45~4

6; contracts/diamond/libraries/LibVault.sol (base): 263~264
Resolved

Description

261 address tokenAddress = vs.tokenAddresses[i.into()];

262 LibVault.AvailableToken storage at = vs.tokens[tokenAddress];

263 uint256 price = LibPriceFacade.getPrice(at.tokenAddress);

264 uint256 balance = vs.treasury[at.tokenAddress];

In getTotalValueUsd() tokenAddress variable can be used instead of at.tokenAddress storage field to save gas.

45 address priceFeed = pf.feedAddress;

46 require(pf.feedAddress != address(0), "LibChainlinkPrice: Price feed

does not exist");

In removeChainlinkPriceFeed() priceFeed variable can be used instead of pf.feedAddress storage field to save gas.

Recommendation

We recommend using memory variables instead of storage fields.

LIB-03 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibChainlinkPrice.sol#L45-L46
https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/libraries/LibVault.sol#L263-L264

OAT-01 OrderAndTradeHistoryFacet.getOrderAndTradeHistory() IS

GAS CONSUMING

Category Severity Location Status

Gas

Optimization
Optimization

contracts/diamond/facets/OrderAndTradeHistoryFacet.sol (ba

se): 64
Resolved

Description

OrderAndTradeHistoryFacet.getOrderAndTradeHistory() is an external view function. view functions can be

limited by the amount of computational resources available on a particular node. If a view function is particularly resource-

intensive, it may cause nodes to become overwhelmed and unable to execute it.

64 ActionInfo[] memory infos = hs.actionInfos[user];

The function copies all the hs.actionInfos[user] array from storage into memory . The array can be extremely big and

copying can be expensive in terms of gas.

Recommendation

We recommend omitting the copying of the whole array and accessing the hs.actionInfos[user] elements directly:

71 UC oldest = uc(hs.actionInfos[user].length - start - 1);

72 ...

73 ActionInfo memory ai = hs.actionInfos[user][(oldest -

i).into()];

OAT-01 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/OrderAndTradeHistoryFacet.sol#L64-L64

TRA-02 TradingCloseFacet._transferToUserForClose() CAN BE

OPTIMIZED

Category Severity Location Status

Coding Style Optimization contracts/diamond/facets/TradingCloseFacet.sol (base): 221~224 Resolved

Description

221 if (userReceive > 0) {

222 _closeTradeReceived(tradeHash, to, settleTokens[0].token,

userReceive);

223 }

224 settleTokens[0].amount -= userReceive;

settleTokens[0].amount can be updated only if userReceive > 0 .

The function contains code repetitions and can be refactored.

It is recommended to check at line 267 that

267 require(userReceiveUsd == 0, "TradingCloseFacet: Insufficient funds in the

openTrade");

Recommendation

We recommend performing function refactoring.

TRA-02 APOLLOX - AUDIT 2

https://github.com/apollox-finance/apollox-perp-contracts/tree/32490e5cb13bf90af5cda621ae3464e77c250000/contracts/diamond/facets/TradingCloseFacet.sol#L221-L224

FORMAL VERIFICATION APOLLOX - AUDIT 2

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state transfer Has No Unexpected State Changes

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-never-return-false transfer Never Returns false

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

FORMAL VERIFICATION APOLLOX - AUDIT 2

Property Name Title

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always allowance Always Succeeds

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-change-state approve Has No Unexpected State Changes

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

FORMAL VERIFICATION APOLLOX - AUDIT 2

Property Name Title

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

Verification Results

For the following contracts, model checking established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract ALP (contracts/ALP.sol) In Commit
1d4142c08a10b459c3625ceba84606135de3d2fd

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-false True

erc20-transfer-exceed-balance True

erc20-transfer-never-return-false True

FORMAL VERIFICATION APOLLOX - AUDIT 2

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-change-state True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

FORMAL VERIFICATION APOLLOX - AUDIT 2

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

FORMAL VERIFICATION APOLLOX - AUDIT 2

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract ALP (contracts/ALP.sol) In Commit
32490e5cb13bf90af5cda621ae3464e77c250000

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-succeed-normal Inapplicable Not in scope

erc20-transfer-succeed-self Inapplicable Not in scope

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-recipient-overflow Inapplicable Not in scope

FORMAL VERIFICATION APOLLOX - AUDIT 2

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-succeed-normal Inapplicable Not in scope

erc20-transferfrom-succeed-self Inapplicable Not in scope

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow Inapplicable Not in scope

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION APOLLOX - AUDIT 2

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-succeed-normal True

erc20-approve-revert-zero True

erc20-approve-correct-amount True

erc20-approve-false True

erc20-approve-change-state True

erc20-approve-never-return-false True

FORMAL VERIFICATION APOLLOX - AUDIT 2

APPENDIX APOLLOX - AUDIT 2

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw

format and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

APPENDIX APOLLOX - AUDIT 2

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

APPENDIX APOLLOX - AUDIT 2

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

erc20-transfer-revert-zero

transfer Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount) must fail if the

recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-succeed-normal

transfer Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient, amount) must

succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

 0x100 &&

 _balances[to] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

transfer Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form transfer(recipient,

amount) where the recipient address equals the address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

APPENDIX APOLLOX - AUDIT 2

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

 _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

transfer Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of transfer(recipient,

amount) that return true must subtract the value in amount from the balance of msg.sender and add the same value to

the balance of the recipient address. Specification:

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

 && value >= 0 && _balances[to] + value <

 0x100 &&

 _balances[msg.sender] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==>

 _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

 == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

transfer Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient, amount)

that return true and where the recipient address equals msg.sender (i.e. self-transfers) must not change the balance

of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

 && _balances[to] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

 old(_balances[to]))))

erc20-transfer-change-state

transfer Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount) that return

true must only modify the balance entries of the msg.sender and the recipient addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

 <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

 old(_balances[p1]) && other_state_variables ==

 old(other_state_variables)))))

APPENDIX APOLLOX - AUDIT 2

erc20-transfer-exceed-balance

transfer Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that exceeds the

balance of msg.sender must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

 _balances[msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-recipient-overflow

transfer Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount) must fail if it

causes the balance of the recipient address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

 >= 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _balances[msg.sender] <

 0x100 && value >

 0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

 finished(contract.transfer(to, value), return == false) ||

 finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

 value -

 0x100)))

erc20-transfer-false

If transfer Returns false , the Contract State Is Not Changed. If the transfer function in contract contract fails by

returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

 value), return == false ==> (_balances == old(_balances) && _totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

transfer Never Returns false . The transfer function must never return false to signal a failure. Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

APPENDIX APOLLOX - AUDIT 2

erc20-transferfrom-revert-from-zero

transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the from address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-revert-to-zero

transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the dest address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-succeed-normal

transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest, amount) must

succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

 address(0) && from != to && value <= _balances[from] && value <=

 _allowances[from][msg.sender] && _balances[to] + value <

 0x100 && value >=

 0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

transferFrom Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount) where the

dest address equals the from address (i.e. self-transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

APPENDIX APOLLOX - AUDIT 2

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

 && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

 >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

transferFrom Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount) that succeed and that return true subtract the value in amount from the balance of address from and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] + value <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]) - value && _balances[to] ==

 old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true and where the address in from equals the address in dest (i.e. self-transfers) do not change the

balance entry of the from address (which equals dest). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

 value < 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

transferFrom Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true must decrease the allowance for address msg.sender over address from by the value in amount .

Specification:

APPENDIX APOLLOX - AUDIT 2

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

 value) || (_allowances[from][msg.sender] ==

 old(_allowances[from][msg.sender]) && (from == msg.sender ||

 old(_allowances[from][msg.sender]) ==

 0xFF))))))

erc20-transferfrom-change-state

transferFrom Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest, amount)

that return true may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

 (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

 to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

 _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

 old(_allowances[p2][p3]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

transferFrom Fails if the Requested Amount Exceeds the Available Balance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the balance of address from must fail. Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-fail-exceed-allowance

transferFrom Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form transferFrom(from,

APPENDIX APOLLOX - AUDIT 2

dest, amount) with a value for amount that exceeds the allowance of address msg.sender must fail. Specification:

[](started(contract.transferFrom(from, to, value), msg.sender != from && value >

 _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false)))

erc20-transferfrom-fail-recipient-overflow

transferFrom Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount) with a

value in amount whose transfer would cause an overflow of the balance of address dest must fail. Specification:

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

 value >= 0x100 &&

 value < 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), _balances[to] > old(_balances[to]) + value -

 0x100)))

erc20-transferfrom-false

If transferFrom Returns false , the Contract's State Is Unchanged. If transferFrom returns false to signal a failure,

it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

 <>(finished(contract.transferFrom(from, to, value), return == false ==>

 (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-never-return-false

transferFrom Never Returns false . The transferFrom function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

totalSupply Always Succeeds. The function totalSupply must always succeeds, assuming that its execution does not

run out of gas. Specification:

APPENDIX APOLLOX - AUDIT 2

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

totalSupply Returns the Value of the Corresponding State Variable. The totalSupply function must return the value that

is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

 == _totalSupply)))

erc20-totalsupply-change-state

totalSupply Does Not Change the Contract's State. The totalSupply function in contract contract must not change any

state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

balanceOf Always Succeeds. Function balanceOf must always succeed if it does not run out of gas. Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the contract's

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc20-balanceof-change-state

balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

APPENDIX APOLLOX - AUDIT 2

Properties related to function allowance

erc20-allowance-succeed-always

allowance Always Succeeds. Function allowance must always succeed, assuming that its execution does not run out of

gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

allowance Returns Correct Value. Invocations of allowance(owner, spender) must return the allowance that address

spender has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), return ==

 _allowances[owner][spender])))

erc20-allowance-change-state

allowance Does Not Change the Contract's State. Function allowance must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

approve Prevents Approvals For the Zero Address. All calls of the form approve(spender, amount) must fail if the

address in spender is the zero address. Specification:

[](started(contract.approve(spender, value), spender == address(0)) ==>

 <>(reverted(contract.approve) || finished(contract.approve(spender, value),

 return == false)))

erc20-approve-succeed-normal

approve Succeeds for Admissible Inputs. All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas. Specification:

APPENDIX APOLLOX - AUDIT 2

[](started(contract.approve(spender, value), spender != address(0)) ==>

 <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

approve Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount) that

return true must correctly update the allowance mapping according to the address msg.sender and the values of

spender and amount . Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

 0 && value <

 0x100) ==>

 <>(finished(contract.approve(spender, value), return == true ==>

 _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

approve Has No Unexpected State Changes. All calls of the form approve(spender, amount) must only update the

allowance mapping according to the address msg.sender and the values of spender and amount and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

 msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

 value), return == true ==> _totalSupply == old(_totalSupply) && _balances

 == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

 other_state_variables == old(other_state_variables))))

erc20-approve-false

If approve Returns false , the Contract's State Is Unchanged. If function approve returns false to signal a failure, it

must undo all state changes that it incurred before returning to the caller. Specification:

[](willSucceed(contract.approve(spender, value)) ==>

 <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

 old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

 old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

approve Never Returns false . The function approve must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

APPENDIX APOLLOX - AUDIT 2

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER APOLLOX - AUDIT 2

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER APOLLOX - AUDIT 2

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

ApolloX - Audit 2 Security Assessment CertiK Verified on May 10th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

